Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters

Publication year range
1.
PLoS One ; 17(1): e0259190, 2022.
Article in English | MEDLINE | ID: mdl-34986148

ABSTRACT

Emergence of multidrug resistant pathogens is increasing globally at an alarming rate with a need to discover novel and effective methods to cope infections due to these pathogens. Green nanoparticles have gained attention to be used as efficient therapeutic agents because of their safety and reliability. In the present study, we prepared zinc oxide nanoparticles (ZnO NPs) from aqueous leaf extract of Acacia arabica. The nanoparticles produced were characterized through UV-Visible spectroscopy, scanning electron microscopy, and X-ray diffraction. In vitro antibacterial susceptibility testing against foodborne pathogens was done by agar well diffusion, growth kinetics and broth microdilution assays. Effect of ZnO NPs on biofilm formation (both qualitatively and quantitatively) and exopolysaccharide (EPS) production was also determined. Antioxidant potential of green synthesized nanoparticles was detected by DPPH radical scavenging assay. The cytotoxicity studies of nanoparticles were also performed against HeLa cell lines. The results revealed that diameter of zones of inhibition against foodborne pathogens was found to be 16-30 nm, whereas the values of MIC and MBC ranged between 31.25-62.5 µg/ml. Growth kinetics revealed nanoparticles bactericidal potential after 3 hours incubation at 2 × MIC for E. coli while for S. aureus and S. enterica reached after 2 hours of incubation at 2 × MIC, 4 × MIC, and 8 × MIC. 32.5-71.0% inhibition was observed for biofilm formation. Almost 50.6-65.1% (wet weight) and 44.6-57.8% (dry weight) of EPS production was decreased after treatment with sub-inhibitory concentrations of nanoparticles. Radical scavenging potential of nanoparticles increased in a dose dependent manner and value ranged from 19.25 to 73.15%. Whereas cytotoxicity studies revealed non-toxic nature of nanoparticles at the concentrations tested. The present study suggests that green synthesized ZnO NPs can substitute chemical drugs against antibiotic resistant foodborne pathogens.


Subject(s)
Acacia/metabolism , Foodborne Diseases/prevention & control , Metal Nanoparticles/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Biofilms/drug effects , Escherichia coli/drug effects , Foodborne Diseases/microbiology , Green Chemistry Technology/methods , HeLa Cells , Humans , Microbial Sensitivity Tests/methods , Microscopy, Electron, Scanning/methods , Plant Extracts/pharmacology , Plant Leaves/metabolism , Reproducibility of Results , Spectrometry, X-Ray Emission/methods , Staphylococcus aureus/drug effects , X-Ray Diffraction/methods , Zinc/chemistry , Zinc/metabolism , Zinc Oxide/metabolism
2.
Microbiol Spectr ; 9(3): e0137721, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34908469

ABSTRACT

The dormancy continuum hypothesis states that in response to stress, cells enter different stages of dormancy ranging from unstressed living cells to cell death, in order to ensure their long-term survival under adverse conditions. Exposure of Listeria monocytogenes cells to sublethal stressors related to food processing may induce sublethal injury and the viable-but-nonculturable (VBNC) state. In this study, exposure to acetic acid (AA), hydrochloric acid (HCl), and two disinfectants, peracetic acid (PAA) and sodium hypochlorite (SH), at 20°C and 4°C was used to evaluate the potential induction of L. monocytogenes strain Scott A into different stages of dormancy. To differentiate the noninjured subpopulation from the total population, tryptic soy agar with 0.6% yeast extract (TSAYE), supplemented or not with 5% NaCl, was used. Sublethally injured and VBNC cells were detected by comparing plate counts obtained with fluorescence microscopy and by using combinations of carboxyfluorescein and propidium iodide (viable/dead cells). Induction of sublethal injury was more intense after PAA treatment. Two subpopulations were detected, with phenotypes of untreated cells and small colony variants (SCVs). SCVs appeared as smaller colonies of various sizes and were first observed after 5 min of exposure to 5 ppm PAA at 20°C. Increasing the stress intensity from 5 to 40 ppm PAA led to earlier detection of SCVs. L. monocytogenes remained culturable after exposure to 20 and 30 ppm PAA for 3 h. At 40 ppm, after 3 h of exposure, the whole population was considered nonculturable, while cells remained metabolically active. These results corroborate the induction of the VBNC state. IMPORTANCE Sublethally injured and VBNC cells may evade detection, resulting in underestimation of a food product's microbial load. Under favorable conditions, cells may regain their growth capacity and acquire new resistant characteristics, posing a major threat for public health. Induction of the VBNC state is crucial for foodborne pathogens, such as L. monocytogenes, the detection of which relies almost exclusively on the use of culture recovery techniques. In the present study, we confirmed that sublethal injury is an initial stage of dormancy in L. monocytogenes that is followed by the VBNC state. Our results showed that PAA induced SCVs (a phenomenon potentially triggered by external factors) and the VBNC state in L. monocytogenes, indicating that tests of lethality based only on culturability may provide false-positive results regarding the effectiveness of an inactivation treatment.


Subject(s)
Acetic Acid/pharmacology , Disinfectants/pharmacology , Hydrochloric Acid/pharmacology , Listeria monocytogenes/growth & development , Peracetic Acid/pharmacology , Sodium Hypochlorite/pharmacology , Food Contamination/analysis , Food Handling , Food Microbiology , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Humans , Listeria monocytogenes/drug effects , Listeria monocytogenes/isolation & purification , Listeriosis/prevention & control
3.
PLoS One ; 16(10): e0256324, 2021.
Article in English | MEDLINE | ID: mdl-34710139

ABSTRACT

Because of the continuous rise of foodborne illnesses caused by the consumption of raw fruits and vegetables, effective post-harvest anti-microbial strategies are necessary. The aim of this study was to evaluate the anti-microbial efficacy of ozone (O3) against two common causes of fresh produce contamination, the Gram-negative Escherichia coli O157:H7 and Gram-positive Listeria monocytogenes, and to relate its effects to potential mechanisms of xenobiosis by transcriptional network modeling. The study on non-host tomato environment correlated the dose × time aspects of xenobiosis by examining the correlation between bacterial survival in terms of log-reduction and defense responses at the level of gene expression. In E. coli, low (1 µg O3/g of fruit) and moderate (2 µg O3/g of fruit) doses caused insignificant reduction in survival, while high dose (3 µg/g of fruit) caused significant reduction in survival in a time-dependent manner. In L. monocytogenes, moderate dose caused significant reduction even with short-duration exposure. Distinct responses to O3 xenobiosis between E. coli and L. monocytogenes are likely related to differences in membrane and cytoplasmic structure and components. Transcriptome profiling by RNA-Seq showed that primary defenses in E. coli were attenuated after exposure to a low dose, while the responses at moderate dose were characterized by massive upregulation of pathogenesis and stress-related genes, which implied the activation of defense responses. More genes were downregulated during the first hour at high dose, with a large number of such genes getting significantly upregulated after 2 hr and 3 hr. This trend suggests that prolonged exposure led to potential adaptation. In contrast, massive downregulation of genes was observed in L. monocytogenes regardless of dose and exposure duration, implying a mechanism of defense distinct from that of E. coli. The nature of bacterial responses revealed by this study should guide the selection of xenobiotic agents for eliminating bacterial contamination on fresh produce without overlooking the potential risks of adaptation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli O157/drug effects , Foodborne Diseases/prevention & control , Listeria monocytogenes/drug effects , Ozone/pharmacology , Solanum lycopersicum/microbiology , Bacterial Load/drug effects , Food Microbiology , Foodborne Diseases/microbiology , Fruit/microbiology , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Microbial Viability/drug effects , Proof of Concept Study , RNA, Bacterial/genetics , RNA-Seq , Transcriptome/drug effects , Transcriptome/genetics , Vegetables/microbiology
4.
Toxins (Basel) ; 13(9)2021 09 21.
Article in English | MEDLINE | ID: mdl-34564676

ABSTRACT

Due to its food-poisoning potential, Bacillus cereus has attracted the attention of the food industry. The cereulide-toxin-producing subgroup is of particular concern, as cereulide toxin is implicated in broadscale food-borne outbreaks and occasionally causes fatalities. The health risks associated with long-term cereulide exposure at low doses remain largely unexplored. Natural substances, such as plant-based secondary metabolites, are widely known for their effective antibacterial potential, which makes them promising as ingredients in food and also as a surrogate for antibiotics. In this work, we tested a range of structurally related phytochemicals, including benzene derivatives, monoterpenes, hydroxycinnamic acid derivatives and vitamins, for their inhibitory effects on the growth of B. cereus and the production of cereulide toxin. For this purpose, we developed a high-throughput, small-scale method which allowed us to analyze B. cereus survival and cereulide production simultaneously in one workflow by coupling an AlamarBlue-based viability assay with ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS). This combinatory method allowed us to identify not only phytochemicals with high antibacterial potential, but also ones specifically eradicating cereulide biosynthesis already at very low concentrations, such as gingerol and curcumin.


Subject(s)
Bacillus cereus/drug effects , Bacillus cereus/metabolism , Depsipeptides/metabolism , Depsipeptides/toxicity , Foodborne Diseases/drug therapy , Foodborne Diseases/microbiology , Phytochemicals/pharmacokinetics , Phytochemicals/therapeutic use , Biological Assay/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods
5.
Molecules ; 26(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34500546

ABSTRACT

The present study aims to evaluate the chemical composition, metabolites secondary and pharmacology activities of methanolic extract of Marrubium vulgare collected from King Saudi Arabia. Moreover, the primary mode of action of the tested extract was studied here for the first time against E. coli and L. monocytogenes. HPLC analysis shows that the major components in the tested extract are luteolin-7-O-d-glucoside, ferulic acid and premarrubiin. Obtained data demonstrated that the investigated extract was richer in phenol (26.8 ± 0.01 mg/GAE g) than in flavonoids (0.61 ± 0.05 mg EC/mL). In addition, the methanolic extract showed an important antioxidant capacity against the DPPH (IC50 = 35 ± 0.01 µg/mL) and ABTS (IC50 = 25 ± 0.2 µg/mL) radical scavenging and a strong inhibition of acetylcholinesterase enzyme with an IC50 value corresponding to 0.4 mg/mL. The antibacterial activity demonstrated that the evaluated extract had significant activity against both Gram-positive and Gram-negative bacteria. The effect of time on cell integrity on E. coli and L. monocytogenes determined by time-kill and bacteriolysis tests showed that the M. vulgare extract reduced the viability of both strains after 8 and 10 h and had a bacteriolytic effect against two different categories of bacteria, Gram-positive and negative, which are not of the same potency. Based on obtained data, it can be concluded that Saudi M. vulgare has a high pharmacological importance and can be used in preparation of food or drugs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Foodborne Diseases/drug therapy , Marrubium/chemistry , Plant Extracts/pharmacology , Antioxidants/physiology , Chromatography, High Pressure Liquid/methods , Escherichia coli/drug effects , Flavonoids/pharmacology , Foodborne Diseases/microbiology , Listeria monocytogenes/drug effects , Microbial Sensitivity Tests/methods , Phenols/pharmacology , Saudi Arabia
6.
Int J Biol Macromol ; 186: 702-713, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34273341

ABSTRACT

Essential oils' active compounds present great potential as a bactericidal agent in active packaging. The encapsulation in polymeric walls promotes their protection against external agents besides allowing controlled release. This work produced PLA capsules with three different active compounds, Cinnamomum cassia essential oil (CEO), eugenol (EEO), and linalool (LEO), by emulsion solvent evaporation method. Characterizations included SEM, Zeta potential, FTIR, TGA, and bactericidal activity against E. coli, S. aureus, L. monocytogenes, and Salmonella. The active compounds showed microbiological activity against all pathogens. CEO capsules showed superior colloidal stability. The active compounds' presence in all capsules was confirmed by FTIR analysis, with possible physical interaction between CEO, EEO, and the polymeric matrix, while LEO had a possible chemical interaction with PLA. TGA analysis showed a plasticizing effect of active compounds, and the loading efficiency was 39.7%, 50.7%, and 22.3% for CEO-PLA, EEO-PLA, and LEO-PLA, respectively. The capsules presented two release stages, sustaining activity against pathogens for up to 28 days, indicating a satisfactory internal morphology. This study presented methodology for encapsulation of antimicrobial compounds that can be suitable for active food packaging. CEO-PLA capsules regarding stability and antibacterial activity achieved the best results.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Foodborne Diseases/prevention & control , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Polyesters/chemistry , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/growth & development , Capsules , Cinnamomum aromaticum , Colloids , Drug Compounding , Drug Liberation , Drug Stability , Eugenol/chemistry , Eugenol/pharmacology , Food Microbiology , Food Packaging , Foodborne Diseases/microbiology , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Plant Oils/chemistry , Time Factors
7.
Int J Food Microbiol ; 332: 108768, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-32623289

ABSTRACT

Soil-borne Salmonella is associated with a large number of food-related disease outbreaks linked to pre-harvest contamination of plants (like tomato) in agricultural fields. Controlling the spread of Salmonella at field is very important in order to prevent various food-borne illnesses. One such approach involves the utilization of antimicrobial secondary metabolite of plant origin. We screened common salad vegetables for anti-Salmonella activity. Beta vulgaris root (beetroot) had very low colonization of Salmonella under in vitro conditions. We hypothesized that beetroot can be used to reclaim the soil contaminated with Salmonella. Cultivation of B. vulgaris in Salmonella treated soil brings down its CFU significantly. Since these antimicrobial effects are non-specific, a co-cultivation system of beet and tomato (a Salmonella susceptible plant) was used to analyze the effect on soil and its microbiota. The soil physicochemical properties and bacterial diversity were unaffected when tomato and beet co-cultivation was used. However, Salmonella burden on the tomato was reduced and its yield was restored. Thus, the inclusion of these crops in the crop-rotation or as a mixed/intercrop or as a bio-control crop can be a fruitful tool to reclaim the Salmonella contaminated soil.


Subject(s)
Agriculture/methods , Beta vulgaris/growth & development , Salmonella/growth & development , Solanum lycopersicum/growth & development , Solanum lycopersicum/microbiology , Beta vulgaris/metabolism , Beta vulgaris/microbiology , Colony Count, Microbial , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Plant Exudates/pharmacology , Salmonella/drug effects , Soil Microbiology
8.
Pak J Pharm Sci ; 32(4): 1485-1494, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31608866

ABSTRACT

This study sheds the light on the presence of (some) food-borne pathogens in raw market milk in Mansoura city, (Egypt) using several techniques for isolation and identification including serology and PCR. It determines, further, the susceptibility of the isolated pathogens to some antimicrobial agents and natural oils, including watercress, basil, parsley, and hot green pepper oils. From 100 milk samples, 22 Escherichia coli isolates harboured stx1, stx2 and/or eae genes. Additionally, 17 Listeria monocytogenes (L. monocytogenes) isolates harboured hylA gene. Moreover, other related pathogens such as Shigella flexneri and Klebsiella pneumoniae were also detected. Antimicrobial susceptibility testing showed that E. coli strains were (completely) resistant to amoxicillin and sulfamethoxazole-trimethoprim but highly sensitive to gentamicin. L. monocytogenes strains showed complete resistance against oxytetracycline while the highest percentage of sensitivity was observed against norfloxacin. This study has also proved the following: L. monocytogenes was susceptible to all of the investigated oils, Klebsiella pneumoniae was sensitive to two types of oils, but E. coli and Shigella flexneri were resistant to all oils. In conclusion, it is risky to consume unpasteurized milk. Further, some natural oils (e.g. parsley and hot green pepper oils) can successfully be used as food additives to control the presence of some pathogens in milk.


Subject(s)
Anti-Bacterial Agents/pharmacology , Food Microbiology , Milk/microbiology , Plant Oils/pharmacology , Adhesins, Bacterial/genetics , Animals , Drug Resistance, Bacterial/drug effects , Egypt , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Proteins/genetics , Foodborne Diseases/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Listeria monocytogenes/drug effects , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Microbial Sensitivity Tests , Shiga Toxin 1/genetics , Shiga Toxin 2/genetics , Shigella flexneri/drug effects
9.
Molecules ; 24(15)2019 Aug 03.
Article in English | MEDLINE | ID: mdl-31382605

ABSTRACT

Dihydromyricetin (DMY) has recently attracted increased interest due to its considerable health-promoting activities but there are few reports on its antibacterial activity and mechanism. In this paper, the activity and mechanisms of DMY from Ampelopsis grossedentata leaves against food-borne bacteria are investigated. Moreover, the effects of pH, thermal-processing, and metal ions on the antibacterial activity of DMY are also evaluated. The results show that DMY exhibits ideal antibacterial activity on five types of food-borne bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella paratyphi, and Pseudomonas aeruginosa). The activities of DMY against bacteria are extremely sensitive to pH, thermal-processing, and metal ions. The morphology of the tested bacteria is changed and damaged more seriously with the exposure time of DMY. Furthermore, the results of the oxidative respiratory metabolism assay and the integrity of the cell membrane and wall tests revealed that the death of bacteria caused by DMY might be due to lysis of the cell wall, leakage of intracellular ingredients, and inhibition of the tricarboxylic acid cycle (TCA) pathway.


Subject(s)
Ampelopsis/chemistry , Anti-Bacterial Agents/pharmacology , Flavonols/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Cell Membrane/drug effects , Cell Membrane Permeability/drug effects , Cell Wall/drug effects , Flavonols/chemistry , Foodborne Diseases/microbiology , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Molecular Structure , Oxidative Phosphorylation/drug effects , Plant Extracts/chemistry , Structure-Activity Relationship
10.
Molecules ; 24(16)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443325

ABSTRACT

Propolis is a natural mixture produced by bees from plant resin substances. This study focuses on the general characteristics of five samples of Polish extract propolis originating from agricultural areas. Chemical composition with high performance liquid chromatography‒diode array detector method, total content of flavonoids and polyphenols, and antioxidative activity were determined in the ethanol extracts of propolis (EEP) samples. Minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC) and time-kill curves were studied for foodborne pathogens and food spoilage microorganisms. In EEPs the predominant flavonoid compounds were pinocembrin, chrysin, pinobanksin, apigenin, and kaempferol and the predominant phenolic acids were p-coumaric acid, ferulic acid, and caffeic acid. A strong antioxidative action of propolis in vitro was observed (IC50 for DPPH radical was at the level of 0.9-2.1 µg/mL). EEPs had MIC values for bacteria in the range of 1-16 mg/mL, whereas MIC for fungi ranged from 2 to 32 mg/mL. Extract of propolis originating from southern Poland was distinguished by higher content of bioactive components, and stronger antioxidative and antimicrobial activity than EPPs from the remaining areas of Poland. The results indicate the possibility of applying ethanol extracts from Polish propolis to protect food against microbiological spoilage.


Subject(s)
Anti-Infective Agents/pharmacology , Biological Control Agents/pharmacology , Food Microbiology , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Propolis/chemistry , Anti-Infective Agents/chemistry , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bacteria/drug effects , Biological Control Agents/chemistry , Chromatography, High Pressure Liquid , Ethanol/chemistry , Ethanol/pharmacology , Microbial Sensitivity Tests , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Poland
11.
Int J Food Microbiol ; 306: 108266, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31319195

ABSTRACT

The antimicrobial activities of lemon oil based nanoemulsion and two different concentrations of lemon essential oil (100% and 10%) on food-brne pathogens (Staphylococcus aureus, Klebsiella pneumoniae, Enterococcus faecalis and Salmonella Paratyphi A) and fish spoilage bacteria (Photobacterium damselae, Enterococcus faecalis, Vibrio vulnificus, Proteus mirabilis, Serratia liquefaciens, and Pseudomonas luteola) were compared in terms of disc diffusion, minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC). The constitutes of extracted lemon essential oil were identified by using GC-MS. Viscosity, the mean droplet size, thermodynamic stability and refractive index of nanoemulsions were determined. The main components detected in the lemon essential oil were d-limonene, p-cymene, ß-pinene with percentages of 52.85%, 14.36%, and 13.69%, respectively. It was found that lemon nanoemulsion was more effective on food-borne pathogens except K. pneumoniae than 100% lemon essential oil. 10% lemon essential oil showed the highest inhibition effect on S. Paratyphi A. The conversion of the essential oil into nanoemulsion improved antimicrobial activity. According to value of MIC, both nanoemulsion and 100% essential oil inhibited bacterial growth of all of the pathogen bacteria tested whereas they were less effective on inhibition of fish spoilage bacteria. However, 10% essential oil was more effective on spoilage bacteria than pathogens. MBC showed that nanoemulsion and 100% lemon essential oil presented a noticeable bactericidal activity against S. paratyphi A whereas 10% lemon essential oil was found as ≥25 mg/mL against pathogens and spoilage bacteria. Therefore, the use of nanoemulsion based on lemon essential oil can have potential as a natural antimicrobial agent against food-borne pathogen and spoilage bacteria for fish processing industry.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Foodborne Diseases/prevention & control , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Citrus/classification , Food , Food Microbiology , Foodborne Diseases/microbiology , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Plant Extracts/pharmacology
12.
Mar Drugs ; 17(7)2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31324025

ABSTRACT

Posidonia oceanica waste biomass has been valorised to produce extracts by means of different methodologies and their bioactive properties have been evaluated. Water-based extracts were produced using ultrasound-assisted and hot water methods and classified according to their ethanol-affinity (E1: ethanol soluble; E2: non-soluble). Moreover, a conventional protocol with organic solvents was applied, yielding E3 extracts. Compositional and structural characterization confirmed that while E1 and E3 extracts were mainly composed of minerals and lipids, respectively, E2 extracts were a mixture of minerals, proteins and carbohydrates. All the extracts showed remarkably high antioxidant capacity, which was not only related to phenolic compounds but also to the presence of proteins and polysaccharides. All E2 and E3 extracts inhibited the growth of several foodborne fungi, while only E3 extracts decreased substantially the infectivity of feline calicivirus and murine norovirus. These results show the potential of P. oceanica waste biomass for the production of bioactive extracts.


Subject(s)
Alismatales/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacokinetics , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Biomass , Caliciviridae Infections/drug therapy , Caliciviridae Infections/virology , Calicivirus, Feline/drug effects , Cats , Ethanol/chemistry , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Humans , Lipids/chemistry , Lipids/isolation & purification , Lipids/pharmacology , Mice , Microbial Sensitivity Tests , Mitosporic Fungi/drug effects , Norovirus/drug effects , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , RAW 264.7 Cells , Solvents/chemistry , Water/chemistry
13.
Food Res Int ; 119: 530-540, 2019 05.
Article in English | MEDLINE | ID: mdl-30884686

ABSTRACT

Salmonella represents an important global public health problem and it is an emerging zoonotic bacterial threat in the poultry industry. Diverse registered human cases of salmonellosis shown poultry origins. Various control measures have been employed both at the farming and processing levels to address it. This review focuses on traditional and new detection techniques of biofilm formation by Salmonella spp. and different approaches that can be used to prevent and/or control biofilm formation by these bacteria. A number of methodologies based on different approximations have been recently employed to detect and evaluate bacteria attached to surfaces, including real-time polymerase chain reaction (PCR), confocal laser scanning microscopy and Optical Coherence Tomography. Due to persistence of Salmonella biofilm in food processing environments after cleaning and sanitation, control and eradication strategies in poultry industry should be constantly studied. In this sense, the use of several alternatives to control Salmonella biofilm formation, such as lactic acid bacteria, phagetherapy, extracts from aromatic plants, quorum sensing inhibitors, bacteriocins and nanomaterials, have been successfully tested and will be reviewed.


Subject(s)
Biofilms/drug effects , Biofilms/growth & development , Food Industry , Food Microbiology , Poultry/microbiology , Salmonella/metabolism , Animals , Bacteria , Bacteriocins/pharmacology , Farms , Food Contamination/prevention & control , Food Handling/methods , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Humans , Lactobacillales/physiology , Nanostructures , Phage Therapy , Plant Extracts/pharmacology , Quorum Sensing/drug effects , Salmonella/drug effects , Salmonella Infections/microbiology , Salmonella Infections/prevention & control
14.
PLoS One ; 14(3): e0212946, 2019.
Article in English | MEDLINE | ID: mdl-30845147

ABSTRACT

Campylobacter jejuni is a zoonotic agent responsible for the foodborne gastroenteritis campylobacteriosis. Control of C. jejuni load in the poultry primary production is recognized as an avenue to reduce human exposure to the pathogen. As for now, no commercially applicable control methods exist at the farm. Several studies tested egg yolk powders, potentiated or not against C. jejuni, as feed additives for chicken and suggested that the quantity and quality of the antibodies presence in the yolk are determinant factors for the full success of this approach. Unfortunately, data from these studies inconsistently showed a reduction of cecal C. jejuni carriage. Our first goal wwas to characterize (quantification by ELISA, agglutination test, bacterial antigen recognition profiles by Western blot, bactericidal effect by serum killing assays and C. jejuni mobility by soft agar migation) the antibodies extracted from egg yolk powders originating from different egg production protocols. Secondly, these powders were microencapsulated and recharacterized. Finally the protected powders were tested as a feed additive to destabilize C. jejuni colonization in an in vivo assay. Despite the in vitro results indicating the ability of the egg yolk powders to recognize Campylobacter and potentially alter its colonization of the chicken caecum, these results were not confirmed in the in vivo trial despite that specific caecal IgY directed toward Campylobacter were detected in the groups receiving the protected powders. More research is needed on Campylobacter in order to effectively control this pathogen at the farm.


Subject(s)
Antibodies, Bacterial/immunology , Campylobacter Infections/prevention & control , Campylobacter jejuni/immunology , Egg Yolk/immunology , Food Additives/administration & dosage , Animal Feed , Animals , Antibodies, Bacterial/administration & dosage , Antigens, Bacterial/immunology , Bacterial Load/drug effects , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Campylobacter jejuni/isolation & purification , Cecum/microbiology , Chickens/microbiology , Drug Compounding , Drug Evaluation, Preclinical , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Immunoglobulins/administration & dosage , Immunoglobulins/immunology , Poultry Products/poisoning , Powders , Treatment Outcome
15.
Microbiome ; 7(1): 13, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696492

ABSTRACT

BACKGROUND: Arugula is a traditional medicinal plant and popular leafy green today. It is mainly consumed raw in the Western cuisine and known to contain various bioactive secondary metabolites. However, arugula has been also associated with high-profile outbreaks causing severe food-borne human diseases. A multiphasic approach integrating data from metagenomics, amplicon sequencing, and arugula-derived bacterial cultures was employed to understand the specificity of the indigenous microbiome and resistome of the edible plant parts. RESULTS: Our results indicate that arugula is colonized by a diverse, plant habitat-specific microbiota. The indigenous phyllosphere bacterial community was shown to be dominated by Enterobacteriaceae, which are well-equipped with various antibiotic resistances. Unexpectedly, the prevalence of specific resistance mechanisms targeting therapeutic antibiotics (fluoroquinolone, chloramphenicol, phenicol, macrolide, aminocoumarin) was only surpassed by efflux pump assignments. CONCLUSIONS: Enterobacteria, being core microbiome members of arugula, have a substantial implication in the overall resistome. Detailed insights into the natural occurrence of antibiotic resistances in arugula-associated microorganisms showed that the plant is a hotspot for distinctive defense mechanisms. The specific functioning of microorganisms in this unusual ecosystem provides a unique model to study antibiotic resistances in an ecological context.


Subject(s)
Brassicaceae/microbiology , Enterobacteriaceae/classification , Enterobacteriaceae/isolation & purification , Metagenome/genetics , Microbiota/genetics , Anti-Bacterial Agents/pharmacology , Base Sequence , Drug Resistance, Bacterial/genetics , Enterobacteriaceae/genetics , Foodborne Diseases/microbiology , Microbial Sensitivity Tests , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Food Sci Technol Int ; 25(2): 101-108, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30193534

ABSTRACT

The selection and use of natural compounds with antimicrobial activity against foodborne pathogens is of major importance. The present study evaluated the antimicrobial activity of commercial essential oils against multidrug-resistant Enterococcus spp. and Aeromonas spp. Cymbopogon flexuosus and Thymus vulgaris essential oils presented the highest inhibitory zones against both bacterial groups ( p < 0.05). Subsequent determination of the minimum inhibitory concentrations showed values between 0.47 and 1.9 mg/ml for Aeromonas spp. and from 1.9 to 15 mg/ml for Enterococcus spp. The antimicrobial effect of C. flexuosus and T. vulgaris essential oils was also assessed against biofilms. Bacteria in biofilm state were subjected to 30 min or 1 h of exposure to each essential oil and eradication ability estimated by colony counting. Both essential oils exhibited antimicrobial activity against preformed Aeromonas biofilms, but were unable to successfully eradicate biofilms produced by enterococci, in the conditions under investigation. Nonetheless, the presumptive use of essential oils in the food industry should be considered in further investigations.


Subject(s)
Aeromonas/drug effects , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Drug Resistance, Multiple/drug effects , Enterococcus/drug effects , Magnoliopsida/chemistry , Oils, Volatile/pharmacology , Cymbopogon , Food Microbiology , Foodborne Diseases/microbiology , Humans , Plankton , Plant Extracts/pharmacology , Thymus Plant
17.
Food Microbiol ; 78: 194-200, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30497603

ABSTRACT

Clostridium difficile, recently reclassified to Clostridioides difficile, is among most important causes of intestinal infections in humans. Zoonotic potential and foodborne transmissions are considered to be partially involved in C. difficile spread. Here we report prevalence of C. difficile in 142 retail and 12 homegrown vegetables in Slovenia between years 2014 and 2017. The overall prevalence of C. difficile on vegetables was 18,2% (28/154). A total of 115 isolates were obtained which belonged to 25 PCR ribotypes. Ten of those were toxigenic and PCR ribotype 014/020 was the most prevalent. Most of 25 determined PCR ribotypes were previously reported in humans, animals, soil or water in Slovenia. Among tested vegetables, potatoes had the highest positivity rate (28,0% vs. 6,7% and 9,4% for ginger and leaf vegetables). Altogether 66,7% of C. difficile positive potato samples were imported from 12 different countries of three different continents. The origin of contamination could be any point between production and retail store, however, our results suggest a possibility that potatoes represent a transnational and transcontinental way of C. difficile transmissions.


Subject(s)
Clostridioides difficile/isolation & purification , Food Microbiology , Solanum tuberosum/microbiology , Vegetables/microbiology , Animals , Clostridioides difficile/genetics , Clostridium Infections/microbiology , Clostridium Infections/transmission , Feces/microbiology , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Humans , Polymerase Chain Reaction/methods , Prevalence , Ribotyping , Slovenia/epidemiology , Zoonoses/epidemiology , Zoonoses/microbiology , Zoonoses/prevention & control
18.
Artif Cells Nanomed Biotechnol ; 46(sup3): S414-S422, 2018.
Article in English | MEDLINE | ID: mdl-30522355

ABSTRACT

Rosin acids (RA) from coniferous trees are used in folk medicine for healing various skin infections. Despite the antimicrobial potential of RA, their poor solubility in aqueous media may limit their use. In this work RA-loaded polyethylene glycol-poly(lactic-co-glycolic acid) nanoparticles (RA-NPs) with enhanced antimicrobial properties against foodborne bacterial pathogens were produced. RA-NPs were prepared by solvent displacement technique and characterized for relevant colloidal features by dynamic light scattering, laser Doppler anemometry and transmission electron microscopy. Association of RA to NPs occurred with high yields (86% w/w). RA and RA-NPs (∼130 nm) were strongly active against antibiotic-sensitive Gram + pathogens, i.e. Clostridium perfringens, Listeria monocytogenes and antibiotic-resistant Staphylococcus aureus. However, both failed in inhibiting the growth of Gram - pathogens (Campylobacter jejuni, Campylobacter coli, Escherichia coli and Salmonella enterica). Association to NPs enhanced the antimicrobial activity of RA. MIC, IC50, IC90, and MBC values of RA-NPs were ten-times lower than RA. RA-NPs did not change the intrinsic toxicity potential of RA. This is the first study on the enhancement of the antimicrobial activity of RA when associated to nanocarriers. This approach may be an effective strategy to produce aqueous-based RA solutions with enhanced antimicrobial activity against antibiotic-sensitive and antibiotic-resistant Gram + pathogens.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial/drug effects , Foodborne Diseases , Gram-Positive Bacteria/growth & development , Gram-Positive Bacterial Infections/drug therapy , Nanoparticles/chemistry , Resins, Plant , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Foodborne Diseases/drug therapy , Foodborne Diseases/microbiology , Gram-Negative Bacteria/growth & development , Humans , Resins, Plant/chemistry , Resins, Plant/pharmacology
20.
Cell Mol Biol (Noisy-le-grand) ; 64(10): 79-86, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30084799

ABSTRACT

The incrementing scope of pathogenic resistance to antibiotics has encouraged the search for antivirulence natural extracts. Therefore, our study designed to demonstrate the antimicrobial activity of an aqueous-garlic and thyme oil extracts against Gram-positive (Staphylococcus aureus) and Gram-negative (Salmonella spp.) bacteria by evaluating the influence of sub-inhibitory concentrations on the expression of the most critical virulence genes of the tested isolates. The antibacterial potential of both herbs was checked by the agar well diffusion method and minimum inhibitory concentration (MIC) assay. Interestingly, all isolates were inhibited by both extracts up to 50% concentration. Also, the MIC values of garlic extract (0.125-1µg/ml) against Salmonella isolates were lower than the values of thyme extract (0.5- 8µg/ml). But in S. aureus isolates, the MIC values of thyme extract (0.25- 2µg/ml) were the lowermost. Conventional PCR investigated that all S. aureus isolates carried the hlg (hemolysin) and icaA (intracellular adhesion) genes, but only six Salmonella isolates (three S. typhimurium and one each of S. kentucky, S. anatum, and S. lagos) had both the sopB (Salmonella outer protein B) and mgtC (membrane protein) genes. Real-time RT-PCR assays were performed to evaluate the extract's effect on the virulence genes. The thyme-oil extract has significantly repressed S. aureus virulence genes expression more than aqueous-garlic extract, which later one has effectively more than thyme-oil extract in downregulating the Salmonella virulence genes. In conclusion, garlic and thyme extracts can be used not only as a flavor, but also as potential antimicrobial agents against Gram-positive and negative bacteria.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Garlic/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Thymus Plant/chemistry , Foodborne Diseases/drug therapy , Foodborne Diseases/microbiology , Gene Expression Regulation, Bacterial/drug effects , Humans , Microbial Sensitivity Tests , Salmonella/drug effects , Salmonella/genetics , Salmonella Infections/drug therapy , Salmonella Infections/microbiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL